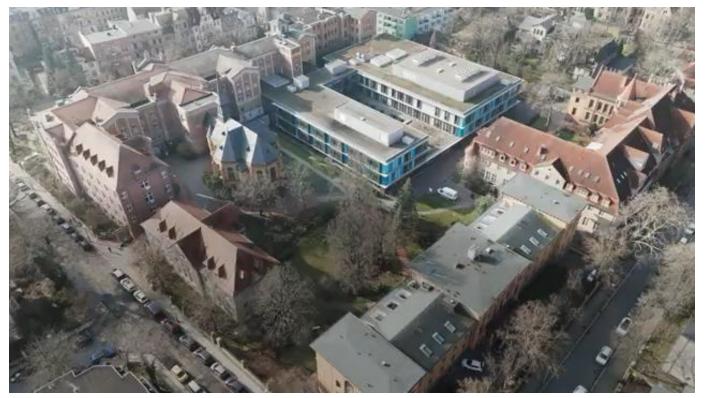


Lehrerkongress 2025

Chemieunterricht 4.0: Automatische Titration mit LEGO-Robotern Vermittlung von informatischen Kompetenzen im Chemieunterricht

Prof. Dr. Amitabh Banerji

Universität Potsdam, Didaktik der Chemie


Automatische Titration mit LEGO-Robotern – Amitabh Banerji

Quelle: https://www.youtube.com/watch?v=F_7IPm7f1vI&t=3s

Immer mehr Jobs benötigen neben fachspezifischen Kenntnissen auch grundlegende IT-Kompetenzen.

Zur Bedeutung der Informatik

"Zur Allgemeinbildung und Mündigkeit gehört aber nicht nur die Nutzung und kritische Reflexion digitaler Medien, sondern auch ein Verständnis der damit verbundenen grundlegenden Konzepte. Erst wenn man versteht, wie etwas funktioniert, kann man selbstständig informatische Probleme bewältigen und fachlich begründete Beurteilungen und Bewertungen vornehmen.

[...]

Tatsächlich sind das Kennen und Verstehen dieser **Funktionsweisen** und **Prinzipien** der **Schlüssel** dazu, sich in der digitalen Welt **souverän** zu bewegen. [...]".

Quelle: Gesellschaft für Informatik e.V.: https://gi.de/fileadmin/GI/Hauptseite/Service/Publikationen/Empfehlungen/GeRRI_komplett_WEB.pdf (letzter Zugriff: 01.12.2020)

Grundkonzepte der Informatik

Automatisierung

Digitalisierung

Informatiksysteme

Grundkonzepte der Informatik

Automatisierung	Digitalisierung	Informatiksysteme
Modellierung	Codierung	Anwendung
Algorithmen	Datentypen	Aufbau
Implementierung	Textverarbeitung	Dateiverwaltung
Dokumentation	Tabellenkalkulation	Kommunikation und Kooperation
Test	Datenmodellierung	Vernetzung
Fehleranalyse	Recherche	Sicherheit
Automaten	personenbezogene Daten	Internetnutzung
Formale Sprachen	gesellschaftlicher Kontext	Soziotechnischer Kontext

Quelle: Gesellschaft für Informatik e.V.:

https://gi.de/fileadmin/GI/Hauptseite/Service/Publikationen/Empfehlungen/GeRRI_komplett_WEB.pdf (letzter Zugriff: 01.12.2020)

Implizite Vermittlung informatischer Kompetenzen im CU

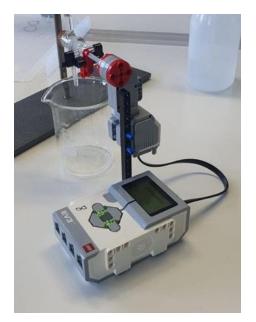
(Banerji et al., 2021)

Beispiel Automatisierung:

"Als Beispiel sei eine Säure-Base-Titration genannt, bei der man an definierten **Objekten** (Geräte & Chemikalien) **iterativ** bestimmte **Operationen** (Titrationsschritte) vornimmt, bis eine **Bedingung** (Farbumschlag) eintritt."

Beispiel **Digitalisierung**:

"Der Umgang mit Daten spielt in der Chemie eine wichtige Rolle. So werden etwa bei quantitativen Messungen oder Analysemethoden **Daten** erfasst und nach **Codierung** in **Tabellen**, **Diagrammen** usw. **zweckbezogen dargestellt**."


Beispiel Informatiksysteme:

"Digitale **Messerwerterfassungssysteme** sind per se solche **Informatiksysteme** mit direktem Bezug zu den Naturwissenschaften."

Explizit: Idee zum LEGO Titrations-Roboter

Prototyp eines
LEGO EV3 Titrier-Roboters

Maria McAdams

Michael Nehls

Dr. Jens Reinecke

Fotos: https://www.goldenberg-europakolleg.eu/auszeichnung-fuer-goldenberger-chemielehrer/

Gliederung

- 1. Einführung in das LEGO SPIKE System
- 2. Durchführung einer automatischen Titration
- 3. Einblicke in die Erprobung mit Schülern & Lehrern
- 4. Ausblick: Was noch möglich ist...
- 5. Fazit & Diskussion

Gliederung

- 1. Einführung in das LEGO SPIKE System
- 2. Durchführung einer automatischen Titration
- 3. Einblicke in die Erprobung mit Schülern & Lehrern
- 4. Ausblick: Was noch möglich ist...
- 5. Fazit & Diskussion

1. Einführung in das LEGO SPIKE System

LEGO SPIKE (Prime Set)
Kosten: ca. 400 EUR pro Set

Das Prime Set enthält:

- 1x Hub mit 6 Anschlüssen + Display
- 3 Motoren (2x mittelstark, 1x stark)
- 1x Abstandssensor, 1x Farbsensor, 1x Drucksensor

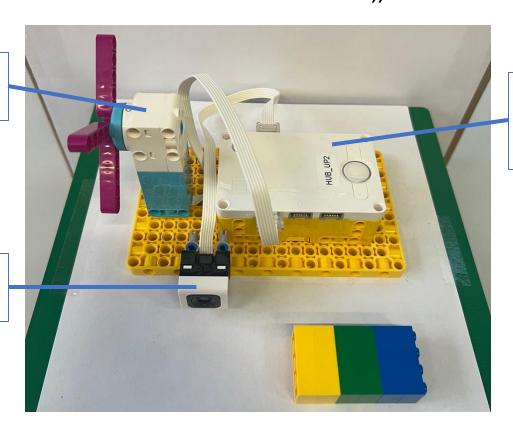
Warum LEGO?

- LEGO ist intuitiv bedienbar
- An viele Schulen bereits vorhanden
- Das Set beinhaltet mehrere Elektronik-Bausteine
- Intuitiv bedienbare grafische Programmierumgebung
 - Basierend auf der Programmiersprache @@@@


"Experiment" 1: Erkunden des LEGO SPIKE Systems

"Experiment" 1: Erkunden des LEGO SPIKE Systems

1) 2) Der Motor



Mein erster "Roboter"

Motor mit Propeller

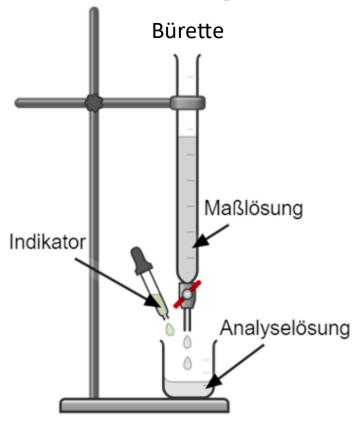
> Farbsensor

Der Hub (Schaltzentrale) + Display

Aufgabe:

- Gelb: Motor dreht sich 2x nach rechts

 Blau: Motor dreht sich 2x nach links


- Grün: Display zeigt in Laufschrift "Hallo Graz".

Gliederung

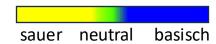
- 1. Einführung in das LEGO SPIKE System
- 2. Durchführung einer automatischen Titration
- 3. Einblicke in die Erprobung mit Schülern & Lehrern
- 4. Ausblick: Was noch möglich ist...
- 5. Fazit & Diskussion

2. Durchführung der Automatischen Titration

Maßlösung:

Salzsäure $c = 0.1 \text{ }^{\text{mol}}/_{\text{L}}$

Analyselösung:


Natronlauge

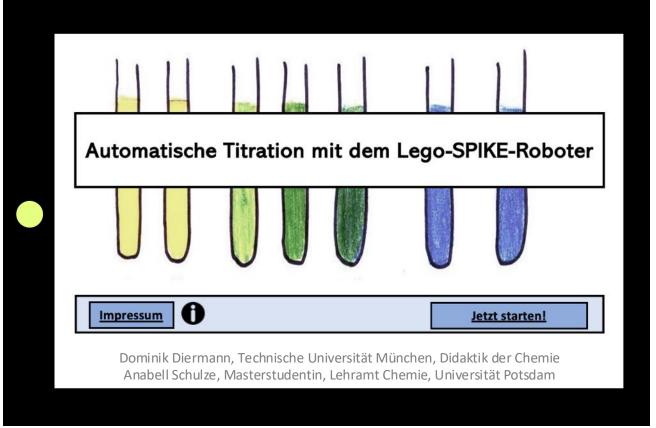
 $c = 0.05 \text{ mol/}_{L}$

V = 6 mL

Indikator:

Bromthymolblau

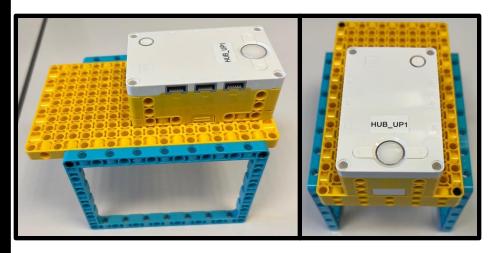
2. Durchführung der Automatischen Titration

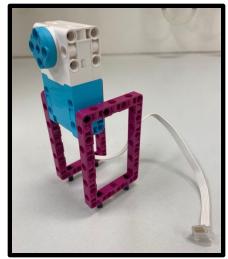

- Herkömmliche Titration
- 1) Hahn der Bürette öffnen
- 2) Kurz warten
- 3) Hahn der Bürette schließen
- 4) Farbe kontrollieren
 - Falls blau, dann zurück zu 1)
 - Falls grün, dann weiter mit 5)
- 5) Volumen der verbrauchten Maßlösung ablesen
- 6) Konzentration der Analyselösung berechnen

- Teilautomatisierte Titration
- 1) Hahn der Bürette öffnen
- 2) Kurz warten
- 3) Hahn der Bürette schließen
- 4) Farbe kontrollieren

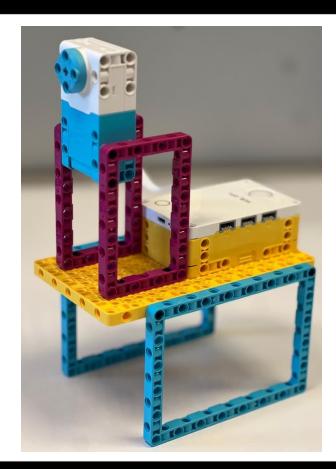
"Experiment" 2: Bau des Titrierroboters

1. Schritt: Ein stabiles Gerüst



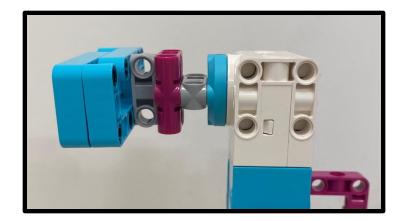

1x Hub 1x Motor 1x gelbe Platte

2x blaues Recht eck 2x pinkfarbenes Rechteck 16x Verbindungsstücke (schwarz)


1. Schritt: Ein stabiles Gerüst

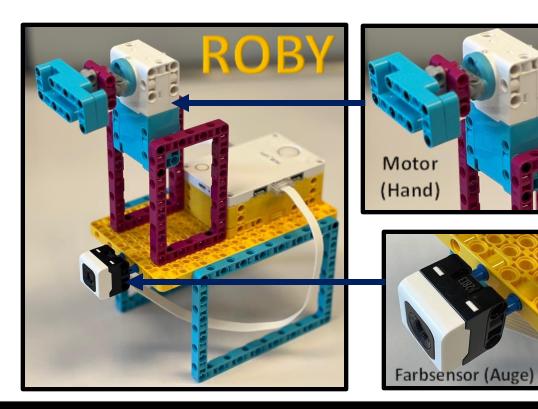
1. Schritt: Ein stabiles Gerüst

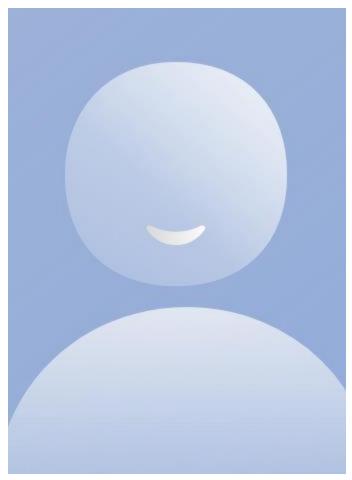
2. Schritt: Eine greifende Hand



2. Schritt: Eine greifende Hand

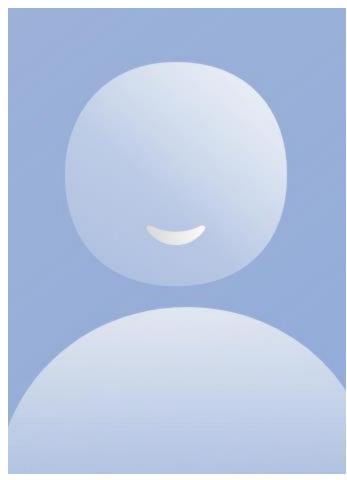
3. Schritt: Ein sehendes Auge





4. Schritt: Der fertige Titrationsroboter

Die Programmierung des Titrierroboters

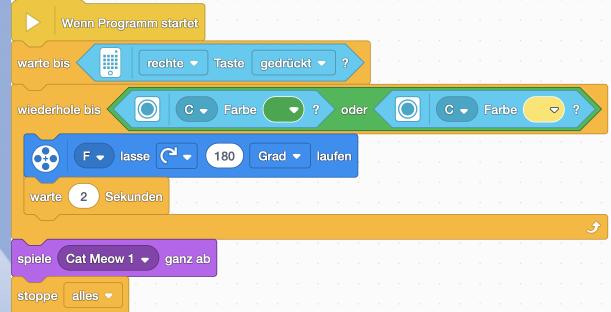

Teilautomatisierte Titration

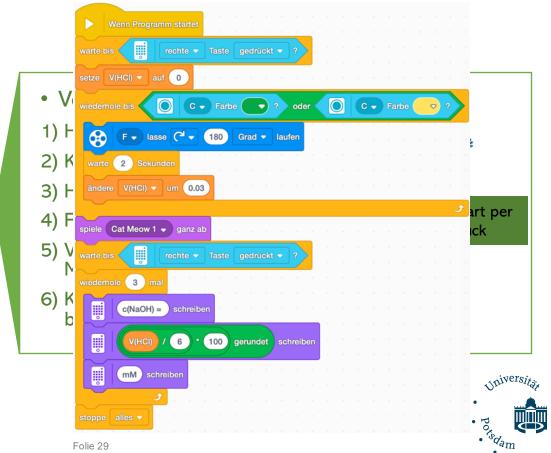
- 1) Hahn der Bürette öffnen
- 2) Kurz warten
- 3) Hahn der Bürette schließen
- 4) Farbe kontrollieren

Programmstart per Knopfdruck

Die Programmierung des Titrierroboters

Erster Programmcode:





Die Programmierung des Titrierroboters

Verbesserter Programmcode:

Der Vollautomatische Titrierroboter

Gliederung

- 1. Einführung in das LEGO SPIKE System
- 2. Durchführung einer automatischen Titration
- 3. Einblicke in Erprobungen mit Schülern & Lehrern
- 4. Ausblick: Was noch möglich ist...
- 5. Fazit & Diskussion

Erprobung mit Schüler*innen

Vielen Dank an den LK Chemie des Sally-Bein-Gymnasiums in Beelitz!

3. Einblicke in die erste LFB am 27.08.2024

Ablaufplan: 9:00 – 12:00 Uhr

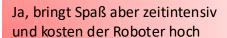
Zeit	Phase
25 min	Begrüßung und Einführung
45 min	Laborphase I: Bau und Programmierung des Roboters
10 min	Pause
25 min	Laborphase II: Durchführung und Optimierung der automatischen Titration
	Wettbewerb:
40 min	- Titrationsroboter treten gegeneinander an (35 min)
	- Siegerehrung (5 min)
35 min	Diskussion, Aufräumen, Abschluss-Evaluation

Automatische Titration mit LEGO-Robotern – Amitabh Banerji

Einblicke & Feedback

Erwartungen wurden übertroffen, ich hatte richtig viel Spaß!

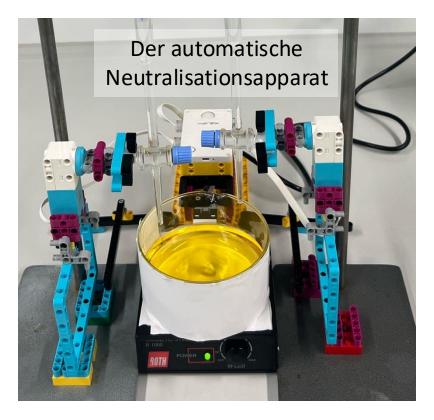
Hat Spaß gebracht und vieles Neues gelernt


Es war etwas anders als erwartet, aber sehr interessant


Ich habe viel Neues gelernt und konnte praktische Erfahrungen im Labor zum gewählten Themenbereich sammeln

Die Zeit der Durchführung im regulären Chemieunterricht fehlt mir, aber für Projekte, die über den regulären Unterricht hinausgehen, finde ich diese sinnvoll

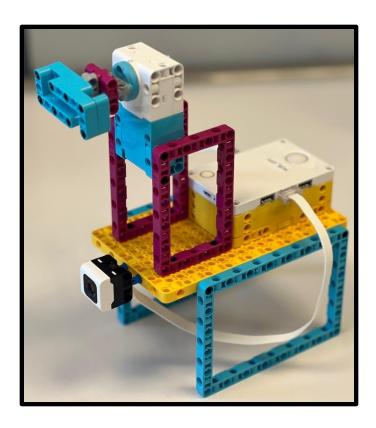
Mich hält zurück, dass bisher an der Schule die LEGO-Sets nicht vorhanden sind.



Gliederung

- 1. Einführung in das LEGO SPIKE System
- 2. Durchführung einer automatischen Titration
- 3. Einblicke in die Erprobung mit Schülern & Lehrern
- 4. Ausblick: Was noch möglich ist...
- 5. Fazit & Diskussion

4. Ausblick: Der automatische Neutralisationsapparat



Gliederung

- 1. Einführung in das LEGO SPIKE System
- 2. Durchführung einer automatischen Titration
- 3. Einblicke in die Erprobung mit Schülern & Lehrern
- 4. Ausblick: Was noch möglich ist...
- 5. Fazit & Diskussion

5. Fazit und Diskussion

- Zur digitalen Mündigkeit gehört nicht nur digitale Systeme zu nutzen, sondern die Grundkonzepte der Informatik zu kennen und diese für die Gestaltung von digitalen Tools anzuwenden.
- Der Chemieunterricht kann hierzu beitragen, indem explizit Bezug zu den Grundkonzepten genommen wird. Der Titrier-Roboter ist hierfür eine sehr gute Möglichkeit.
- Die Anschaffungskosten für LEGO-Roboter sind hoch. Hier kann aber mit der Informatik zusammen gearbeitet werden und/oder Förderanträge können beim FCI gestellt werden.
- Es kostet Zeit, solche Projekte im Unterricht durchzuführen.
 Projektwochen bieten sich daher zum Einstieg gut an. Mithilfe der Begleitmaterialien ist es aber durchaus auch möglich, wiversitzt das Thema im Regelunterricht zu behandeln.

Grundkonzepte der Informatik, die in der Lerneinheit zum Titrationsroboter adressiert werden können.

Automatisierung	Digitalisierung	Informatiksysteme
Modellierung	Codierung	Anwendung
Algorithmen	Datentypen	(Aufbau)
Implementierung	Textverarbeitung	Dateiverwaltung
Dokumentation	Tabellenkalkulation	Kommunikation und Kooperation
Test	Datenmodellierung	Vernetzung
Fehleranalyse	Recherche	Sicherheit
(Automaten)	personenbezogene Daten	Internetnutzung
Formale Sprachen	gesellschaftlicher Kontext	Soziotechnischer Kontext

Quelle: Gesellschaft für Informatik e.V.: https://gi.de/fileadmin/GI/Hauptseite/Service/Publikationen/Empfehlungen/GeRRI_komplett_WEB.pdf (letzter Zugriff: 01.12.2020)

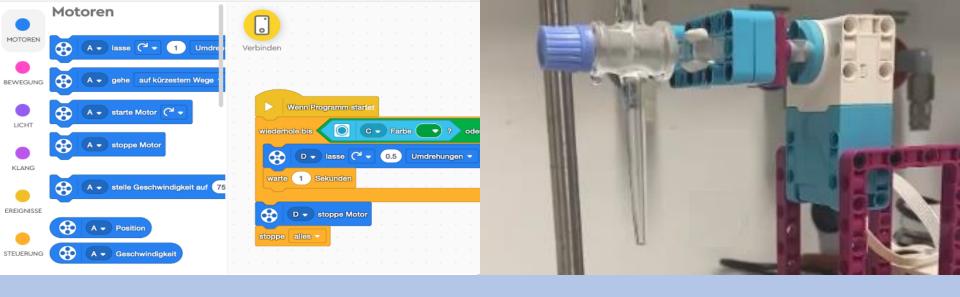
DANKSAGUNG

Maria McAdams

Michael Nehls

Dr. Jens Reinecke

Vielen Dank für Ihre Aufmerksamkeit



Email für mehr Informationen

Quellen:

- A. Banerji, C. Thyssen, B. Pampel, J. Huwer (2021). <u>Naturwissenschaftsunterricht und Informatik bringt zusammen, was zusammen gehört?!</u>. *CHEMKON*, *28*(6), 263–265.
- Gesellschaft für Informatik e.V.:
 https://gi.de/fileadmin/GI/Hauptseite/Service/Publikationen/Empfehlungen/GeRRI_komplett_WEB.pdf (letzter Zugriff: 01.12.2020)

